
April 1998 The Delphi Magazine 53

effectively ignored. Other ven-
dors’ compilers are not so forgiv-
ing, however, and allow these
errors to raise exceptions. You can
easily mask the exceptions your-
self using the Maskx86Exceptions
function in Listing 1.

This function should be called
each time a new process attaches
to a hook DLL. This can be done
using the Systemunit’s DLLProcvari-
able, which is pointed at the
DLLMain procedure in the library’s
initialization code. This then calls
LibEnter each time a process
attaches to the DLL and LibExit
when it detaches. The exception
mask is set back to its previous
state on detachment.

These floating point errors can
also occur in Delphi programs that
use the OpenGL libraries directly,
not just in hooks. If you are doing
OpenGL programming you may
need to bracket your drawing code
with the Maskx86Exceptions and
RestoreX86Mask routines.

Warren Kovach is the author of
Delphi 3 – User Interface Design,
published by Prentice Hall. You
can contact Warren at
wlk@kovcomp.co.uk or by visiting
http://www.kovcomp.co.uk/

compiled with Microsoft’s C com-
pilers did not exhibit this problem.
Eventually I discovered that if both
the DLL and the hook host program
were recompiled under Delphi 2
the problem went away. I suspect
there is something about the code
produced by the new back-end
compiler shared by Delphi 3 and
C++Builder that causes conflicts
with the password routines. I’ve
reported this to Borland so hope-
fully they will be able to track down
the cause and fix it in the next ver-
sion. For now, you should write
your Windows hooks with Delphi 2!

The second problem also occurs
in all Delphi hooks, even Delphi 2. It
reportedly can occur in hooks pro-
duced with other non-Microsoft
compilers as well, but not those
compiled with Microsoft tools.
This is a conflict with 3D graphics
programs using the OpenGL librar-
ies. If a Windows hook is active,
and an OpenGL-based program is
in use, it will eventually crash, usu-
ally during rotation or translation
operations, with a floating point
error. This is actually a problem in
OpenGL: Microsoft is aware of this
and says it will be fixed in future
versions or service packs.

The problem is that the floating
point operations in OpenGL can
sometimes perform invalid opera-
tions, such as division by zero.
Microsoft’s compilers mask float-
ing point exceptions in these
circumstances so that they are

In Issue 26 I described how to use
keyboard hooks to trap system-

wide keystrokes. The code in that
article formed the core of my
shareware program Accent Com-
poser. Over the past few months
I’ve been getting reports of strange
errors that seemed to be linked to
Accent Composer, but were
occurring in other programs and at
odd times. Further investigation
showed that the errors occurred in
all hook programs written in
Delphi. The problems were finally
solved (with help from Colin
Messitt of Oakley Data Services).

The first problem is that any
Windows hook compiled under
Delphi 3 and C++Builder will con-
flict with Windows 95 password
dialog boxes. These include net-
work logon, Internet dialup and
screen saver password dialogs.
Sometimes when a password is
being typed there will be one or
more occurrences of runtime error
216 (access violation). More often
a page fault or access violation
exception will occur in Windows
Explorer, MPREXE.EXE (the net-
work multiple protocol router) or
some other module. These excep-
tions usually occur about a minute
or so after the password has been
typed, although sometimes they
are delayed until the hook program
is exited or Windows is shut down.

This problem seemed resistant
to virtually every attempt to fix it.
The only clue was that hooks

Hooks Unsnagged
by Warren Kovach

➤ Listing 1

library MyHook;
{ ... full code on disk }
var dwOldMask: Pointer;
begin
asm
fnstcw WORD PTR dwOldMask;
mov eax, dwOldMask;
or eax, $3f;
mov WORD PTR dwOldMask + 2, ax;
fldcw WORD PTR dwOldMask + 2;

end;
result := dwOldMask;

end;
procedure RestoreX86Mask(dwOldMask: Pointer);
begin
asm
fnclex;
fldcw WORD PTR dwOldMask;

end;
end;
{ your hook procedure here }

procedure LibEnter;
begin
P86Mask := MaskX86Exceptions;

end;
procedure LibExit;
begin
Restorex86Mask(P86Mask);

end;
procedure DLLMain(Reason:DWORD);
begin
case Reason of
DLL_PROCESS_DETACH : LibExit;
DLL_PROCESS_ATTACH : LibEnter;
DLL_THREAD_ATTACH : ;
DLL_THREAD_DETACH : ;
end;

end;
begin
DLLProc := @DLLMain;
DLLMain(DLL_PROCESS_ATTACH);

end.

